
Adaptive Online Hyper-Parameters Tuning for Ad
Event-Prediction Models

Michal Aharon
Yahoo Research, Haifa, Israel
michala@yahoo-inc.com

Amit Kagian
Yahoo Research, Haifa, Israel
akagian@yahoo-inc.com

Oren Somekh
Yahoo Research, Haifa, Israel
orens@yahoo-inc.com

ABSTRACT
Yahoo’s native advertising (also known as Gemini native) is
one of its fastest growing businesses, reaching a run-rate of
several hundred Millions USD in the past year. Driving the
Gemini native models that are used to predict both, click
probability (pCTR) and conversion probability (pCONV),
is Offset - a feature enhanced collaborative-filtering (CF)
based event prediction algorithm. Offset is a one-pass al-
gorithm that updates its model for every new batch of logged
data using a stochastic gradient descent (SGD) based ap-
proach. As most learning algorithms, Offset includes sev-
eral hyper-parameters that can be tuned to provide best
performance for a given system conditions. Since the mar-
ketplace environment is very dynamic and influenced by sea-
sonality and other temporal factors, having a fixed single set
of hyper-parameters (or configuration) for the learning algo-
rithm is sub-optimal.
In this work we present an online hyper-parameters tun-
ing algorithm, which takes advantage of the system paral-
lel map-reduce based architecture, and strives to adapt the
hyper-parameters set to provide the best performance at a
specific time interval. Online evaluation via bucket testing of
the tuning algorithm showed a significant 4.3% revenue lift
overall tra�c, and a staggering 8.3% lift over Yahoo Home-
Page section tra�c. Since then, the tuning algorithm was
pushed into production, tuning both click- and conversion-
prediction models, and is generating a hefty estimated rev-
enue lift of 5% yearly for Yahoo Gemini native.
The proposed tuning mechanism can be easily generalized to
fit any learning algorithm that continuously learns on incom-
ing streaming data, in order to adapt its hyper-parameters
to temporal changes.

Keywords
Hyper-parameters tuning, learning, map-reduce, native ads,
ad ranking, ad click-prediction

c�2017 International World Wide Web Conference Committee (IW3C2),

published under Creative Commons CC BY 4.0 License.

WWW 2017 Companion, April 3–7, 2017, Perth, Australia.

ACM 978-1-4503-4913-0/17/04.

http://dx.doi.org/10.1145/3041021.3054184

.

Figure 1: Gemini native ads on di↵erent devices.

1. INTRODUCTION
Yahoo’s native ad marketplace (also known as Gemini na-

tive1) serves users with ads that are rendered to resemble
the surrounding native content (see Figure 1 for examples
of Gemini native ads on di↵erent devices). In contrast to
the search-ads marketplace, users intent during page visit is
unknown in general. Launched three years ago and recently
reaching a yearly run-rate of several hundred Millions USD,
Gemini native is one of Yahoo’s fastest growing businesses.
With more than a Billion impressions daily, and an inven-
tory of a few hundred thousand active ads, this marketplace
performs real-time generalized second price (GSP) auctions
that take into account ad targeting, budget considerations,
and frequency and recency rules, with SLA of less than 80 ms
more than 99% of the time. In order to rank the native ads
for an incoming user and her specific context, a score (or ex-
pected revenue) is calculated by multiplying the advertiser’s
bid and the predicted click probability (pCTR) for each ad.
In addition to the cost-per-click (CPC) price type, Gemini
native also supports the oCPx price type. According to this
price-type, advertisers declare a target cost-per-action price
(tCPA) for a conversion event (such as purchasing, filling a
form, or installing an app) that occurs after a click. For this
price type the system predicts the probability of a conver-
sion given a click (pCONV) and multiplies it by the tCPA
to get the e↵ective oCPx bid, which is used during auction.

The pCTR and pCONV are calculated using models that
are periodically updated by Offset - a feature enhanced
collaborative-filtering (CF) based event-prediction algorithm

1https://adspecs.yahoo.com/adformats/native/

[1]. Offset is a one-pass algorithm that updates its latent
factor model for every new mini-batch of logged data using a
stochastic gradient descent (SGD) based learning approach.
Offset is implemented on the grid using map-reduce archi-
tecture [4], where every new mini-batch of logged data is
preprocessed and parsed by many mappers and the ongoing
update of a model is conducted as a centralized process on
a single reducer.

As many other learning algorithms, Offset includes sev-
eral hyper-parameters (or configuration) that can be tuned
to provide best performance for given system conditions.
The architecture of Offset makes it possible to do a par-
allel grid-search to find an “almost” optimal set of hyper-
parameters and its resulting model, for optimizing system
performance. We note that it usually takes a few days to
train the system using a few weeks worth of logged data
in order to get a “mature” model which can be pushed to
production and start serving ads to users.

The Gemini native marketplace is a dynamic environ-
ment that is influenced by seasonality, and other temporal
factors such as market trends, churning and appearing of
large advertisers, and worldwide events. Therefore, having
a single fixed hyper-parameters set (or configuration) is defi-
nitely sub-optimal. Even without considering environmental
changes, a fixed set of hyper-parameters may not fit a model
throughout its whole “life-cycle”; a mature model that has
already been trained over months of data may require di↵er-
ent set of hyper-parameters than the set found by the initial
parallel grid-search described earlier. On the other hand,
performing a parallel grid-search from time to time, using
“fresh” logged data, is a time consuming task as mentioned
earlier.

In this work we take advantage of the system architec-
ture that facilitates training of many models in parallel, and
present an online hyper-parameters tuning framework for
the Offset algorithm2. In particular, the propose tuning
algorithm trains many models with di↵erent configurations
in parallel, and identifies the best configuration and its cor-
responding model according to some performance metric.
While this “best”model is used to serve Gemini native users,
the tuning algorithm uses the “best” configuration to gener-
ate P new configurations in its “vicinity”. Then, it continues
training P copies of the best model, each with one of the P

new configurations, using the new mini-batch of logged data,
and so on and so forth. In this manner, the tuning algorithm
is continuously experimenting with alternative variations of
the currently best performing hyper-parameters configura-
tion. Namely, the tuning algorithm strives to track the best
hyper-parameters set and its corresponding model that pro-
vide the best performance at each time interval. In addi-
tion to the “error-free” procedure briefly described here, the
tuning algorithm is able to handle also extreme scenarios
where few or even all models were diverged and a recov-
ery mechanism must be applied to ensure correct operation.
We note that for simplicity matters we focus here on the
click-prediction version of Offset. However, in practice the
tuning algorithm is optimizing both, click- and conversion-
prediction models, in production using slightly di↵erent se-
tups.

Our tuning algorithm was tested and evaluated serving
real users in online buckets, showing a significant 4.3% rev-

2We note that the proposed tuning algorithm is generic and
can be used for other learning algorithms as well.

enue lift over all tra�c, and a staggering 8.3% lift specifically
for the Yahoo Home-Page section tra�c. Since then, the
tuning algorithm was pushed into production, tuning both
click- and conversion-prediction models, and is generating a
hefty estimated overall lift of ⇠ 5% in revenue yearly for the
Gemini native marketplace.

The rest of this paper is organized as follows. In Section 2
we provide background. Section 3 describes common prac-
tices and related work. Our approach is detailed in Section
4. O✏ine and online evaluation setups and their results are
presented in Section 5. We conclude and discuss future work
in Section 6.

2. BACKGROUND

2.1 Gemini Native
Gemini native is one of Yahoo’s fastest growing businesses,

reaching a few hundred Millions USD run-rate in revenue in
early 2015Q2. Gemini native serves a daily average of more
than Billion impressions across North America, Europe and
Asia, with SLA of less than 80 ms for more than 99% of the
queries, and a native ad inventory of few hundred thousands
active ads on average. The online serving system is com-
prised of a massive Vespa3 deployment, augmented by ads,
budget and model training pipelines. The Vespa index is up-
dated continuously with ad and budget changes, and periodi-
cally (e.g., every 15 minutes) with model updates. The Gem-
ini native marketplace serves several ad price-types includ-
ing CPC (cost-per-click), oCPx (conversion), CPM (cost-
per-thousand impression), and also includes RTB (real-time
biding) in its auctions.

2.2 OffSet - Ad Click-Prediction Algorithm
The algorithm driving Gemini native models is Offset

(One-pass Factorization of Feature Sets): a feature enhanced
collaborative-filtering (CF) based ad click-prediction algo-
rithm [1]. The predicted click-probability or click-through-
rate (pCTR) of a given user u and ad a according to Offset
is given by

pCTR(u, a) =
1

1 + exp�(b+⌫T
u ⌫a)

2 [0, 1] ,

where ⌫u, ⌫a 2 IRD denote the user and ad latent factor
vectors, respectively, and b 2 IR denotes the model bias. The
product ⌫Tu ⌫a denotes the tenancy score of user u towards
ad a, where higher score translates into higher predicted
click-probability. Note that ⇥ = {⌫u, ⌫a, b} are the model
parameters which are learned from the logged data as will
be explained in the sequel.

Both ad and user vectors are constructed using their fea-
tures, which enable dealing with data sparsity issues. For
ads, we use a simple summation between the vectors of the
unique creative id, campaign id, and advertiser id (currently
3 feature vectors, all of dimension D). The combination be-
tween the di↵erent user feature vectors is more complex, al-
lowing non-linear pair-wise dependencies between features.

The user vectors are constructed using their K features
latent vectors vk 2 IRd (e.g., age, gender, geo, etc.). In par-
ticular, o entries are devoted for each pair of user features,
and s entries are devoted for each feature alone. The dimen-
sion of a single feature vector is therefore d = (K�1) ·o+s,
3Vespa is Yahoo’s elastic search engine solution.

1
1
1
1

1
1
1

1
1
1
1

1
1

1

1
1
1
1

1
1
1
1

1 1

D

o

0
iu
v

1
iu
v

2
iu
v

0~
iu
v

1~
iu
v

2~
iu
v

s

iu
v

Figure 2: Example of a user latent factor vector
construction for K = 3, o = 4, s = 2.

where the dimension of the combined user vector is D =�
K
2

�
·o+K ·s (the ad’s side features have the same dimension

D to allow an inner product with the user vector). An illus-
tration of this construction is given in Figure 2. In addition
to having no user cold-start issues, using this presentation
of users the resulting model includes only K user feature
latent factor vectors instead of hundreds of millions unique
user latent factor vectors of the standard CF presentation.

To learn the model parameters ⇥, Offset minimizes the
logistic loss (LogLoss) of the training data set T (i.e., past
impressions and clicks) using one-pass stochastic gradient
descent (SGD) based algorithm. The cost function is as
follows

argmin
⇥

X

(u,a,y)2T

L(u, a, y) ,

where

L(u, a, y) = �(1� y) log (1� pCTR(u, a))

� y log pCTR(u, a) + �

X

✓2⇥

✓

2
,

is the loss function, y 2 {0, 1} is the impression click indica-
tor involving user u and ad a, and � is the L2 regularization
parameter. For each training impression (u, a, y) Offset
updates its relevant model parameters using SGD step

✓ ✓ + ⌘(✓)O✓L(u, a, y) ,

where O✓L(u, a, y) is the divergence of the loss function w.r.t
✓. In addition, the parameter dependent step size is given
by

⌘(✓) = ⌘0
1

↵+
⇣P

(u,a,y)2T 0 |OL(u, a, y)|
⌘�

,

where ⌘0 is the SGD primary step-size, ↵, � 2 IR+ are the
parameters of the adaptive gradient (AdaGrad) algorithm,
inspired by [5], and T 0 is the set of training impressions
seen so far. To summarize this part, here is a partial list
of hyper-parameters that can be tuned to optimize Offset
performance: (a) ⌘0 - SGD primary step-size; (b) ↵, � -
AadaGrad parameters; and (c) � - regularization parameter.

As mentioned earlier, Offset uses an online approach
where it continuously updates its model parameters with
each mini-batch of new training impressions (e.g., every 15
minutes for click-prediction model). A more elaborate de-
scription, including details on AdaGrad use [5], multi-value
features, and regularization can be found in [1].

2.3 System Architecture Overview

/RJJHG
'DWD

0DSSHU

0DSSHU

0DSSHU

0DSSHU��

5HGXFHU

5HGXFHU

5HGXFHU

Figure 3: System architecture in a map-reduce
paradigm.

The Offset training process is sequential, running on a
single reducer. Hence, it is imperative that the learning
of a single mini-batch takes less than the time covered by
the mini-batch (e.g., 15 minutes). Therefore, the input data
should be preprocessed quickly and be organized for Offset
to consume.

For this purpose, we design a map-reduce based mecha-
nism to execute Offset training (see Figure. 3). The input
data is processed by multiple mappers in parallel. Each
mapper employs sub-sampling (includes 1 of n impressions,
and all clicks) and extracts for each sampled event only the
relevant information required for training. The map key is
composed of a serialization of the hyper-parameters set (al-
lowing models with di↵erent hyper-parameters sets to be
trained in parallel). Offset is then executed on a single
reducer (per hyper-parameters set) and trains over all pre-
processed entries.

Using multiple reducers for di↵erent hyper-parameters sets
enables a seamless parameter selection process with little
additional cost. Such a design allows training hundreds of
models in parallel, each with a unique set of training hyper-
parameters set. We can take advantage of this architecture
and perform an initial training with parallel grid-search of
“good”hyper-parameters set (or configuration). After train-
ing over a few weeks worth of logged data, which may take a
few days to execute, the “best” hyper-parameters set and its
resulting model, according to some predefined performance
metric, are selected to serve online tra�c.

A more sophisticated way of exploiting this parallel ar-
chitecture for continuous online tuning of Offset hyper-
parameters set, is the subject of this work and will be pre-
sented in the sequel.

2.4 Serving System Overview
The Gemini native serving platform serves ads across all

Yahoo’s properties and third-party supply (i.e., syndication).
The serving deployment spans on large number of Vespa con-
tainers, including several hundred hosts across several colos
in the US, Europe and Asia. It abides by very strict latency
and SLAs requirements, and is designed to withstand entire
data center failures.

The serving charter is to select which ads to show a user in
a certain context while maximizing revenue, maintaining a
good user experience and a “healthy”marketplace (e.g., not
starving out small advertisers). Therefore, for each impres-
sion the system conducts a generalized second price (GSP)
auction [6], and uses the click- and conversion-prediction
models, campaign budgets and bids, and various rules4, to
perform ad-ranking over the active ads inventory.

Gemini native serving supports live updates of budget, ad
configuration, and prediction model updates. In addition,
Gemini serving supports a very flexible bucketing system
allowing A/B testing and tra�c ramp-up of new models,
and configurations without the need to deploy any code. In
particular the platform splits tra�c between the production
(93%) and science buckets (7%) environments, each backed
by separate Vespa clusters, with potentially di↵erent models,
code, and configuration settings.

3. COMMON PRACTICE AND RELATED
WORK

Most learning algorithms include hyper-parameters that
may be tuned to improve on performance according to a pre-
defined evaluation metric. The problem of hyper-parameter
optimization (or tuning) has been studied for decades in var-
ious disciplines. For instance, in the field of machine learn-
ing, the use of Gaussian processes [10], random forests [8],
and reinforcement learning [8], have been proposed. As op-
posed to these advance methods, simple heuristics such as
grid and random search [2], are widely used by commer-
cial learning systems. In particular, our initial parallel grid
search mentioned in Section 2.3 is a form of grid search.

All the methods mentioned above consider a one time ini-
tial process of hyper-parameters optimization. A work deal-
ing with a continuous online tuning algorithm is presented
in [3]. As we shell elaborate in the sequel, our approach
is quite di↵erent than the one considered in [3]. More-
over, while [3] presents an experimental algorithm which was
tested using public datasets specially engineered to emulate
an online setting, our algorithm is tested and evaluated while
serving millions of users of Yahoo Gemini native tra�c.

4. OUR TUNING APPROACH
In this section we provide definitions and notations needed

for presenting our algorithm. After an in-depth presentation
of our approach, we consider ways to handle extreme scenar-
ios involving models divergence.

4.1 Definitions and Notations

• ⇥ = {⌫uf1 , . . . , ⌫ufK , ⌫a1 , . . . , ⌫a` , b} model parame-
ters (K user features latent vectors, ` ads latent vec-
tors5, and model bias)

• � = {�1, . . . ,�n} model hyper-parameters set (e.g.,
regularization coe�cient, SGD primary step size, and
AdaGrad parameters). For simplicity matters we as-
sume �i 2 IR

4Such as frequency and recency of displaying a certain ad
to a specific user.
5Ad vectors are actually the summation of the creative, cam-
paign, and advertiser latent vectors (see Section 2.2).

• = { 1, . . . , n} model hyper-parameters constraints
 i = [ai, bi] ; ai, bi 2 IR ; ai < bi

• T = {(u, a, y)} logged data which includes triplets of
user information, ad information, and event label

• M : ⇥, T ! IR performance metric such as stratified
AUC and LogLoss

• F : � ! �P model hyper-parameter sets generation
function which gets a certain model hyper-parameters
set �, model hyper-parameters constraints , and a
positive integer P , and generates P model hyper-parameter
sets �,�1, . . . ,�P

• L � 1 hyper-parameters tuning cycle in number of
model train periods

4.2 Hyper-Parameters Tuning Algorithm

4.2.1 General description
The basic idea, is to continuously train, in parallel, mul-

tiple versions of the learning model with P variations of
the hyper-parameters set. In the end of each tuning cy-
cle (e.g., an hour or 4 model training periods), each model
version is evaluated and the current best hyper-parameters
set and resulting model are identified. The training during
the next cycle will continue from the best performing model
with new generated variations of its hyper-parameters. By
doing so, we continuously experiment with variations of the
tuned hyper-parameters set in order to make them adap-
tive to temporal changes. Figure 4 depicts the process of
virtually duplicating the best performing model and resum-
ing its training with multiple hyper-parameter sets (config-
urations). For simplicity, the diagram shows a fixed sets
of configurations while our implementation generates new
configuration variations at each tuning cycle. A formal de-
scription of the hyper-parameters tuning algorithm is given
below and in Algorithm 1.

Figure 4: Tuning algorithm diagram. At each tuning
cycle, the best performing model is identified (de-
noted by a star), duplicated into P copies and then
continues its training with P variations of hyper-
parameters sets.

We assume an initial parameter tuning procedure via par-
allel grid search (see Section 2.3), conducted o✏ine over sev-
eral weeks worth of logged data, resulting with an initial ma-
ture model⇥0 and a corresponding hyper-parameters set �0.
The tuning cycle starts with the model hyper-parameters
sets generation function F getting �0 and and generat-
ing P hyper-parameters sets (the original set �0, and P � 1
new sets). Now, the model ⇥0 is virtually duplicated into
P copies while each copy is trained for L train periods with
its corresponding hyper-parameters set over the logged data

T . After the tuning cycle is due, the model with the best
performance metric is selected along with its corresponding
hyper-parameters set (⇥1

m,�1
m). The selected pair is stored

and used for the next tuning cycle and so on and so forth.
Intuitively, a shorter tuning cycle L enable faster adaption of
the hyper-parameters set, and a longer cycle provides more
accurate evaluation of each hyper-parameters set.

Algorithm 1 Hyper-parameters tuning algorithm

Input: (⇥0
,�0), , P, L

Output: (⇥1
,�1), (⇥2

,�2), . . . - pairs of best models and
corresponding configurations sets for each tuning cycle
1: t 0
2: for ever do
3: generate P hyper-parameters sets

F(�t
,) = {�t

1,�
t
2, . . . ,�

t
P }

4: duplicate ⇥t into P copies {⇥t
1,⇥

t
2, . . . ,⇥

t
P }

5: ⌦ 0, ` 1
6: for `  L do
7: accumulate data of train period T
8: train all P models {(⇥t

i,�
t
i)} over T

9: update performance metric vector
⌦ ⌦+ 1

L (M(⇥t
1, T),M(⇥t

2, T), . . . ,M(⇥t
P , T))

10: ` `+ 1
11: end for
12: (⇥t+1

,�t+1) (⇥t
i,�

t
i) where i = argmin [⌦]j

13: t t+ 1
14: end for

It is noted, that here we provide an error-free procedure
assuming all P models do not diverge. Section 4.3 describes
how the tuning algorithm handles extreme scenarios. Also
worth mentioning is that the procedure may be initiated us-
ing a randomly initialized model and some arbitrary hyper-
parameters set. Such initiation instead of the one based on
grid search may cause temporary performance degradation.

Our approach is di↵erent from that of [3] in several key
points. While we use an incremental training, [3] adds the
new data batch to the historical data and trains its models
from scratch. As we shell show in the sequel, we also use
a more targeted hyper-parameters sets generation function
while [3] uses random search.

4.2.2 Performance metrics

Area-under ROC curve (AUC) The AUC specifies the
probability that, given two random events (one posi-
tive and one negative, e.g., click and skip), their pre-
dicted pairwise ranking is correct [7].

Stratified AUC (sAUC) The weighted average (by num-
ber of positive event, e.g., number of clicks) of the AUC
of each Yahoo section. This metric is used since dif-
ferent Yahoo sections has di↵erent prior click bias and
therefore even using the section feature alone turns out
as su�cient for achieving high AUC values.

Logistic loss (LogLoss)
X

(u,a,y)2T

�y log pCTR(u, a)�(1�y) log (1� pCTR(u, a)) ,

where T is a training set and y 2 {0, 1} is the positive
event indicator (e.g., click or skip).

It is noted, that although all three metrics are available in
the system, the LogLoss metric, which is the metric used
by Offset to train its model, has provided the best results
and was used during the online bucket testing and finally
was pushed into production.

4.2.3 Hyper-parameter sets generation function
There are many heuristic ways we can generate hyper-

parameters sets from a given set. We select a simple scale-
up/scale-down approach according to which we set S scale
factors (e.g., for S = 3: 0.9, 1.0 and 1.1) and use these to
generate S new values for each hyper-parameter of the initial
set. Then, we limit the new values to the predefined con-
straints in case they exceed the given bounds. Assuming
we have M hyper-parameters for tuning, and S scale fac-
tors, the number of new hyper-parameters sets F generates
equals SM , which equals to 81 in case S = 3 and M = 4.

For practical reasons we don’t wish the number of new set
to exceed a predefined maximum number of sets Pm (say
Pm = 100). In case P > Pm we select the original set and
additional Pm � 1 sets at random.

4.3 Handling Extreme Scenarios
To get the best performance of the tuning mechanism the

constraints of the hyper-parameters should be rather loose.
On the other hand, having a tuning mechanism that strive
to get the best performance using loose constraints is risky
since our SGD based model learning algorithms might di-
verge. One can think of this process to resemble a person
walking along the edge of a cli↵. To get the best view you
want to get as close to the edge as possible. However, walk-
ing so close to the edge is dangerous since you may slip
and fall. Therefore, we must detect when we start to “slip”
(detect model divergence), make sure that we have a safety
harness (use anchor configurations), and wear a parachute
in case we fall (add a recovery mechanism).

Temporal changes and local minima.
As the system keeps learning continuously over time it

may face some temporal changes in the environment/market
that will lead the online hyper-parameters tuning to be“stuck”
in a local minima. For example, in the ad marketplace, dur-
ing the holiday season, there is an enormous daily addition
of new ads. In such a scenario, identifying good new ads
may be a critical factor for marketplace revenue. Thus,
the hyper-parameters of the model are adapted to allow
more rapid changes in the model itself (e.g. a larger step
size). This puts more weight on quick learning of new ads
rather than more accurate learning of familiar ads. How-
ever, as the holiday season abruptly ends, it is di�cult for
the hyper-parameters to move away from that area in the
hyper-parameters search-space. The tuning algorithm is
now “stuck” in a local minima. The hyper-parameters were
able to adjust to a temporal change in the environment and
they cannot find their way back once the marketplace is
back to normal. Experimentation with online tra�c during
the holiday season of December-January 2015-2016 demon-
strated this kind of behavior. We introduce the concept of
Anchor hyper-parameters set in order to deal with scenarios
of this sort.

Anchor hyper-parameters set.
The tuning system is all about generating new hyper-

parameters sets in the vicinity of the last winning set, and
training copies of the winning model with these new sets us-
ing the next logged data batch. This is a risky move that can
bring more revenues but may cause all models to diverge, or
alternatively, lead the hyper-parameters tuning into a local
minima. To reduce this risk we use a small number of pre-
defined hyper-parameters sets (e.g., k = 16), referred to as
Anchor sets, that include parameters with moderate values
(e.g., “small” SGD step sizes, and “large” regularization con-
stants) and that were tested over long period of time during
which their corresponding models showed no sign of diver-
gence. Those Anchor sets {b�1, . . . ,

b�k} are included in the
tuning process along with their corresponding models. So in
practice after every tuning cycles we store the best model of
that tuning cycle, along with the k models that are trained
using the Anchor hyper-parameters sets. This mechanism
provides safety anchors, preventing the model from “getting
lost” in the hyper-parameters search-space.

Model divergence detection.
There are many heuristics to detect model divergence.

The simplest yet e↵ective way to detect a model divergence
event is to monitor the magnitude of the model parameters
by checking whether the amplitude of one of them surpasses
a predefined threshold. Hence, we declare that a specific
model ⇥ diverged if

9 ✓ 2 ⇥, such that |✓| > Td .

Setting Td is somewhat tricky since it is data and model
dependent. It also presents a trade-o↵ between false-alarm
and missed-detection and requires a long calibration process
via o✏ine and online buckets experimentation.

In case a specific model diverges within a tuning cycle,
that model is not updated in the end of the learning period
and it will resume training with the next batch of logged
data. It is worth mentioning that such a model is less up-
dated than the other models which causes its performance
metric to deteriorate and in turn reduces its likelihood to be
the best model in the forthcoming cycles. Since in each tun-
ing cycle we train P models in parallel having one diverged
model is not critical. We declare that the whole system has
failed only if all P models were diverged at once.

Recovery mechanism.
In case all models are diverged at the end of a tuning cy-

cle, the system roles back and start from the latest cycle
that ended correctly (i.e., at least one model didn’t diverge)
using“fresh” logged data. Note, that the system is able to do
so since it stores the series of best models and correspond-
ing hyper-parameters sets. If the next tuning cycle still ends
with all models diverging, the system uses the previous cor-
rect cycle and resume learning from there and so on and so
forth. The system is allowed to dive into the past up to a
predefined number of cycles. In case all models still diverge
after that, the system halts, and human intervention is re-
quired. In this extreme and rare case, the system has to be
restarted and resume training from scratch or using some
other reliable model and hyper-parameters set pair.

0 1 2 3 4 5 6 7 8 9 10
−1

−0.5

0

0.5

1

1.5

2

Time [weeks]

Pe
rfo

rm
an

ce
 li

fts
 [p

er
ce

nt
ag

e]

SAUC lift
LogLoss lift

Figure 5: Hyper-parameters tuning mechanism of-
fline performance metrics lifts over time, measured
every 3 hours.

0 1 2 3 4 5 6 7 8 9 10
10−10

10−8

10−6

10−4

10−2

100

102

Time [weeks]

N
or

m
al

iz
ed

 h
yp

er
−p

ar
am

et
er

s

adaGrad β
SGD stepSize η0

adaGrad α
regularization λ

Figure 6: Normalized hyper-parameters values over
time, measured every 3 hours.

5. EVALUATION
We have conducted both, o✏ine and online evaluations,

to asses and measure the benefits of the proposed tuning
mechanism.

5.1 Offline Evaluation

5.1.1 Setup
To assess the potential benefits of the tuning mechanism,

we trained the system over almost 10 weeks worth of data,
which includes the entire logged tra�c of Yahoo’s native ads
marketplace (many billions of impressions). We use both,
sAUC and LogLoss metrics (see Section 4.2.2), to measure
o✏ine performance, where each event is used for training
the system before applied to the performance metrics. The
tested system parameters included:

• Hyper-parameters tuning metric: LogLoss

• Tuning cycle length: 3 hours (L = 12, with 15 min.
train periods)

• Tuned hyper-parameters: SGD primary step size ⌘0,
AdaGrad ↵, and AdaGrad �, regularization coe�cient
�

• Hyper-parameters sets generating function F : scale
parameters {0.5, 1.0, 1.5}, S = 3, and P = 34 = 81

• Hyper-parameters constraints :
⌘0 2 [0, 1], ↵ 2 [0, 103], � 2 [0, 20], , � 2 [0, 1]

• 16 anchor configurations are included

As a baseline approach, we used grid search and chose
the “best” hyper-parameters set after training over one week
worth of data. Then, we used this set and train a system
with no tuning mechanism (referred to as stale system) over
the same logged data, measuring the same performance met-
rics.

5.1.2 Results
Figure 5 presents the sAUC and LogLoss lifts of the tun-

ing system when compared to those of the baseline stale
system, measured every 3 hours. Examining the figure it is
observed that both lifts provided by the tuning mechanism
are increasing with time reaching 0.51% and 0.66% average
increase in LogLoss and sAUC during the last week of the
experiment. The temporal normalized hyper-parameters se-
lected by the tuning mechanism are plotted in a logarithmic
scale versus time6. It is observed that the most dynamic pa-
rameter is the regularization coe�cient which is practically
vanishes with time.

5.2 Online Evaluation

5.2.1 Setup
To evaluate the tuning mechanism we used the science

buckets environment described in Section 2.4, and launched
a bucket serving around 1% of all Gemini native tra�c for
a few days. The performance of the bucket, in terms of
CPM (average cost per 1000 impressions), were measured
and compared to the science control bucket who runs the
same code as production in the science environment and
serves also around 1% of the tra�c. We used the same
system parameters as in the o✏ine evaluation (see Section
5.1.1) except that the tuning cycle is set to one hour (L = 4,
with 15 min. train periods).

5.2.2 Results
Figure 7 presents the CPM lifts of the tuning bucket over

the control bucket during 8 days for 1% of all tra�c and
of Yahoo Home-Page section tra�c. As some sections have
their own ad serving implementation (e.g., mail) that adds
noise to the evaluation, we focused on Yahoo Home-Page
section tra�c in order to measure the actual lift provided by
our method. The average measured lifts in CPM during the
online experiment were 4.3% over all tra�c, and 8.3% over
the Yahoo Home-Page section tra�c. Those improvements
were later validated using a larger bucket in the production
environment, before ramping-up the tuning system to serve

6Each temporal hyper-parameter is divided by its counter-
part within the stale system hyper-parameters set

the entire tra�c. In retrospective, it is estimated that our
hyper-parameters tuning method provided ⇠ 5% CPM lift
over all tra�c since it was pushed into production.

To conclude this section we note that the CPM lifts re-
ported in the online evaluation are much higher than the
sAUC and LogLoss lifts reported in the o✏ine evaluation.
This gap demonstrates the problematic issue of using o✏ine
metrics for predicting online performance.

0 1 2 3 4 5 6 7 8 90

2

4

6

8

10

12

14

16

Time [days]

C
PM

 li
fts

 [p
er

ce
nt

]

Home Page traffic
All traffic

Figure 7: Hyper-parameters tuning mechanism rev-
enue (CPM) lifts over time for all tra�c and for
Yahoo Home-Page section tra�c.

6. CONCLUSIONS AND FUTURE WORK
In this work we present an online hyper-parameters adap-

tive tuning mechanism for the Offset algorithm, which
drives the ad click-prediction models in Yahoo’s Gemini na-
tive. Our approach takes advantage of Offset implemen-
tation map-reduce architecture, and trains many models in
parallel with di↵erent hyper-parameters sets for each in-
coming batch of new logged data. This way the system
is tuned to match changing market trends, and other tem-
poral dynamics. The algorithm was pushed into production
in 2016Q2 and has been providing a hefty 5% lift in Gemini
native revenue since. We note that our approach is generic
and may be applied to optimize other learning systems.

Future work may include the use of more sophisticated
hyper-parameters sets generation functions. In particular,
since the performance metric is a non-convex function of the
hyper-parameters, numerical methods such as the Nelder-
Mead method [9], used to find the exterema of an objective
function in a multidimensional space, may be combined into
our tuning framework.

7. REFERENCES
[1] Michal Aharon, Natalie Aizenberg, Edward Bortnikov,

Ronny Lempel, Roi Adadi, Tomer Benyamini, Liron
Levin, Ran Roth, and Ohad Serfaty. O↵-set: one-pass
factorization of feature sets for online recommendation
in persistent cold start settings. In Proc. RecSys’2013,
pages 375–378, 2013.

[2] James Bergstra and Yoshua Bengio. Random search
for hyper-parameter optimization. Journal of Machine
Learning Research, 13(Feb):281–305, 2012.

[3] Simon Chan, Philip Treleaven, and Licia Capra.
Continuous hyperparameter optimization for
large-scale recommender systems. In Big Data, 2013
IEEE International Conference on, pages 350–358.
IEEE, 2013.

[4] Je↵rey Dean and Sanjay Ghemawat. Mapreduce:
simplified data processing on large clusters.
Communications of the ACM, 51(1):107–113, 2008.

[5] John Duchi, Elad Hazan, and Yoram Singer. Adaptive
subgradient methods for online learning and stochastic
optimization. The Journal of Machine Learning
Research, pages 2121–2159, 2011.

[6] Benjamin Edelman, Michael Ostrovsky, and Michael
Schwarz. Internet advertising and the generalized

second-price auction: Selling billions of dollars worth
of keywords. The American economic review,
97(1):242–259, 2007.

[7] Tom Fawcett. An introduction to ROC analysis.
Pattern recognition letters, 27(8):861–874, 2006.

[8] Frank Hutter, Holger H Hoos, and Kevin
Leyton-Brown. Sequential model-based optimization
for general algorithm configuration. In International
Conference on Learning and Intelligent Optimization,
pages 507–523. Springer, 2011.

[9] John A Nelder and Roger Mead. A simplex method
for function minimization. The computer journal,
7(4):308–313, 1965.

[10] Jasper Snoek, Hugo Larochelle, and Ryan P Adams.
Practical bayesian optimization of machine learning
algorithms. In Advances in neural information
processing systems, pages 2951–2959, 2012.

